Opublikowano: 22.01.2021 16:49

Jak sztuczna inteligencja pomoże w zapobieganiu przedwczesnym porodom?

Nad rozwiązaniem pracuje zespół naukowców związanych z Wydziałem Elektroniki i Technik Informacyjnych Politechniki Warszawskiej.

Schemat rozwiązania, nad którym pracują naukowcy

Schemat rozwiązania, nad którym pracują naukowcy

Wg raportu Światowej Organizacji Zdrowia (WHO) spontaniczny przedwczesny poród dotyczy 15 milionów noworodków rocznie. Aż milion z nich umiera. Wiele przez całe życie mierzy się z niepełnosprawnością.

Wykorzystywana powszechnie manualna analiza obrazów ultrasonograficznych umożliwia wykrycie ewentualnych problemów, ale nie jest to metoda doskonała.

Problem ten dostrzegają lekarze. W 2017 roku Nicole Sochacki-Wójcicka (w trakcie specjalizacji z ginekologii) oraz Jakub Wójcicki zgłosili się do dr. Tomasza Trzcińskiego z Wydziału Elektroniki i Technik Informacyjnych PW z pytaniem, czy jest możliwość zrealizowania projektu predykcji spontanicznego przedwczesnego porodu z wykorzystaniem sieci neuronowych.

Wtedy powstał zespół badawczy i zaczęły się prace. Pierwsze efekty już znamy.

– Nasze rozwiązanie może wspomóc diagnostykę komputerową i pozwolić z większą dokładnością przewidywać spontaniczne przedwczesne porody – wyjaśnia Szymon Płotka, absolwent Politechniki Warszawskiej i jeden z członków zespołu pracującego nad projektem.

Wytrenować sieć neuronową

– Przed rozpoczęciem projektu, współpracujący z nami lekarze przygotowali zestaw danych uczących, walidacyjnych oraz adnotacji w formie obrysu kształtu szyjek macicy na obrazach ultrasonograficznych oraz numerycznych (0 i 1), odpowiadającymi kolejno: poród w terminie, poród przedwczesny – wyjaśnia Szymon Płotka.

Po wstępnym oczyszczeniu takie dane są wykorzystywane jako dane „uczące” sieć neuronową – w tym przypadku konwolucyjną (splotową).

– Analizuje ona każde zdjęcie piksel po pikselu, wyodrębniając z nich niezbędne cechy, które posłużą do zadania segmentacji interesującego nas fragmentu obrazu (w tym przypadku szyjki macicy) oraz klasyfikacji (czy mamy do czynienia z porodem przedwczesnym, czy nie) – tłumaczy dalej Szymon Płotka. – W trakcie treningu sieć neuronowa testuje swoje predykcje na zbiorze walidacyjnym. Po zakończeniu trenowania sieci neuronowej, jest ona sprawdzana na danych testowych, które nie zostały wykorzystane w ramach treningu.

W ten sposób weryfikuje się poprawność wytrenowanego modelu.

Jedyne takie

W ramach projektu powstały dwie publikacje naukowe.

Efektem prac opisanych w „Estimation of preterm birth markers with U-Net segmentation network” (publikacja dostępna tutaj i tutaj) jest m.in. redukcja błędu predykcji spontanicznych przedwczesnych porodów z 30% (manualnie przez lekarzy) do 18% przez sieć neuronową.

W „Spontaneous preterm birth prediction using convolutional neural networks” (szczegóły tutaj i tutaj) naukowcy zaprezentowali poprawę jakości segmentacji w stosunku do pierwszej publikacji i uzyskali lepsze wyniki klasyfikacji. 

– Zgodnie z naszą najlepszą wiedzą, są to jedyne istniejące prace podejmujące się zadania predykcji spontanicznego przedwczesnego porodu w oparciu o transwaginalne obrazy ultrasonograficzne – mówi Szymon Płotka.

Naukowcy pracują obecnie nad serwisem w formie aplikacji internetowej. Chcą tam udostępnić przygotowane modele sieci neuronowej. Ma to pomóc ginekologom analizować obrazy ultrasonograficzne i tym samym wesprzeć diagnostykę spontanicznego przedwczesnego porodu. A to może uratować życie i zdrowie milionów noworodków.
 

Projekt „Opracowanie metody predykcji spontanicznych przedwczesnych porodów na podstawie filmów ultrasonograficznych z wykorzystaniem metod uczenia maszynowego w latach 2020-2021” jest finansowany w ramach Grantu Rady Dyscypliny Naukowej Informatyka Techniczna i Telekomunikacja PW

Kierownik projektu: dr hab. inż. Tomasz Trzciński

Zespół: aktualnie techniczną stroną zajmują się Tomasz Włodarczyk (doktorant na Wydziale EiTI), Szymon Płotka (absolwent Wydziału EiTI, autor pracy magisterskiej powstałej w ramach projektu), Tomasz Szczepański (student Wydziału EiTI, obecnie pracujący nad pracą magisterką), dr hab. inż. Tomasz Trzciński i prof. dr hab. inż. Przemysław Rokita, za kwestie medyczne odpowiedzialny jest dr n. med. Michał Lipa – lekarz ginekolog z Uniwersyteckiego Centrum Zdrowia Kobiety i Noworodka Warszawskiego Uniwersytetu Medycznego.